Bhagyashree Bhagat | Blog | SimScale https://www.simscale.com/blog/author/bbhagat/ Engineering simulation in your browser Wed, 20 Dec 2023 23:37:37 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.2 https://www.simscale.com/wp-content/uploads/2022/12/cropped-favicon-32x32.png Bhagyashree Bhagat | Blog | SimScale https://www.simscale.com/blog/author/bbhagat/ 32 32 Team Maverick: Student Success Story https://www.simscale.com/blog/team-maverick-student-success-story/ Wed, 20 Dec 2023 23:34:44 +0000 https://www.simscale.com/?p=85450 In this SimScale student success story, we engage with Team Maverick from Pimpri Chinchwad College of Engineering (PCCoE), India,...

The post Team Maverick: Student Success Story appeared first on SimScale.

]]>
In this SimScale student success story, we engage with Team Maverick from Pimpri Chinchwad College of Engineering (PCCoE), India, as they unveil their transformation in enhancing aerodynamics through SimScale. Beginning with an exploration of UAVs, their diverse applications, and the upcoming competitions in which the team is participating, this narrative sheds light on Team Maverick’s navigation through challenges and innovative strategies.

Team Maverick, an aero design engineering team, is dedicated to designing, innovating, fabricating, and testing fixed-wing UAVs. The team is currently engaged in two prominent competitions scheduled for the 2024 season. Initially, they will participate in the SAE Aero Design Challenge (ADC) International taking place in California. This globally renowned competition draws in approximately 75 teams from around the world, offering a platform to showcase aerodynamic innovations and skills on an international platform. The challenge to design UAVs embodies a vision for the future, where engineering prowess meets technological advancement. It is an opportunity for students to leave an indelible mark on the world, shaping the trajectory of UAVs and unlocking their limitless potential.

Additionally, the team is preparing for the SAE Design and Development Challenge (DDC) India in Chennai. This national competition unites around 87 teams from across India, providing a common ground for colleges to test and demonstrate their aircraft’s aerodynamic capabilities. Both competitions present significant opportunities for the team to excel on both global and national levels.

“Efficiency redefined: SimScale minimises computing demands and maximises productivity.”

– Team Maverick
Team Maverick posing on stage at SAE India
Figure 1: Team Maverick at the SAE Design and Development Challenge India in 2023

A Look Into Unmanned Aerial Vehicles (UAVs)

Before diving into Team Maverick’s journey, it’s crucial to understand the pivotal role that Unmanned Aerial Vehicles (UAVs) play in modern aviation. Fixed-wing UAVs, often recognized for their likeness to conventional airplanes, rely on wings to create lift while in motion through the air. This design, a common variant among UAVs, has revolutionised industries by offering extended flight ranges and remarkable endurance. These aircraft offer extended flight times and faster speeds compared to rotor-based models.

Available in various sizes and configurations, from compact drones to large reconnaissance units, they cater to diverse sectors like logistics, agriculture, and surveillance. Technological advancements, including AI-driven autonomy and improved battery efficiency, signal an even more integral role for UAVs in everyday operations. As regulations evolve to integrate them into airspace seamlessly, the future of UAVs promises increased efficiency, safety, and expanded applications across industries.

Typical structural shape of fixed-wing UAV
Figure 2: Typical structural shape of fixed-wing UAV [1]

Team Maverick: Aeronautics & Beyond

Team Maverick describes its core objective as providing students with a transformative aerospace experience. Beyond aeronautics, the team focuses on developing project and resource management skills, fostering collaboration, and ensuring industry rules and regulations compliance. With a commitment to contributing to the expansion of the field, the team is devoted to building cutting-edge aircraft for future applications and societal impact.

“We aim to produce technologically skilled, socially responsible, and aesthetically conscious engineers.”

– Rifa Ansari, Team Maverick

Every component of the aircraft they designed underwent extensive study and analysis, considering various aerodynamic parameters like wing lift and drag, empennage characteristics, and the overall aircraft performance. Determining downwash and vortex production by simulating wing behavior was a crucial aspect of their work. Additionally, they employed structural analysis methods to evaluate the strength and integrity of each individual component.

Analyzing Aerodynamics and Structural Integrity with SimScale

The team conducted simulations on various iterations of the wing, empennage, fuselage, and the entire aircraft, assessing different parameters such as takeoff and cruising conditions. To understand the aerodynamic performance of each section of the aircraft and evaluate the airflow around the entire plane, a steady-state laminar incompressible flow simulation was performed. Static structural analysis was carried out to better understand the structural integrity of components and to identify potential failure sites in the aircraft. The online tutorials provided by SimScale were instrumental in establishing the fundamental workflow for their project.

How SimScale Helped Address Challenges

The team encountered several challenges throughout the project, including difficulties with report generation, failure to generate lift and drag graphs, lower result accuracy, and issues with contact detection among multiple components.

“SimScale revolutionizes simulation with its cloud-based platform, eliminating the necessity for costly hardware. Its automated meshing tool generates top-tier computational meshes, while seamless integration with leading design applications, simplifying simulation setup. The SimScale Workbench serves as the hub for creating and overseeing simulations, offering an intuitive interface for defining setups with ease.”

– Rifa Ansari, Team Maverick

To tackle these obstacles, they sought assistance from SimScale support through online meetings, effectively addressing most of the challenges. Additionally, the team leveraged the SimScale forum, where they posted queries regarding the encountered issues, receiving valuable responses that contributed to resolving their simulation challenges.

The simulation results were analyzed and validated with manual calculations and wind tunnel testing. The analysis generated results that were close enough to the practical wind tunnel test. The simulations, employing 32 cores, typically took an average of 120-150 minutes to complete from start to finish. However, for particularly complex geometry simulations, the process required additional time. Lift and drag values were majorly obtained along with the coefficient of pitching moment for control surfaces obtained to determine the hinge moment coefficient. The designed bodies’ total deformation and overall structural strength were evaluated.

The team found the platform to offer remarkable convenience and simplicity. According to them, SimScale’s standout feature lay in its ability to utilize multiple cores, surpassing hardware limitations and significantly reducing time constraints. Team Maverick was particularly impressed by the meshing component, which seamlessly aligned with their desired mesh quality, presenting numerous parameters. Furthermore, the platform’s visual interface for analyzing solutions was not only comprehensive but also visually appealing.

Displacement magnitude analysis in SimScale of one UAV component
Displacement magnitude analysis in SimScale of another UAV component
Figure 3: Displacement Magnitude

“Through analysis across multiple iterations, SimScale has played a pivotal role in enhancing our project’s overall efficiency. Conducting studies swiftly and seamlessly has minimized both the cost and time associated with building numerous prototypes. In essence, SimScale has been instrumental in streamlining development timelines, cutting costs, minimizing prototype iterations, and amplifying overall efficiency”

– Rifa Ansari, Team Maverick

Next Steps for Team Maverick

On incorporating simulation results into further product development, the team strategises to execute this process in stages. They will soon finalise the entire design by analysing and evaluating various iterations. Specifically, for function-specific requirements, they are investigating the aircraft’s shape and iterating internal structures to guide its form or enhance structural integrity using CFD analysis and structural analysis. Additionally, the team aims to conduct Fluid-Structure Interaction (FSI) and crash analysis to gain insights into the product’s real-world performance.

Anaircraft prototype in flight (developed by Team Maverick at PCCoE)
Figure 4: Prototype of 2023-24 Aircraft in Flight

We’re confident that SimScale’s diverse simulation capabilities will greatly benefit the Team Maverick Student team in upcoming endeavors, and we’re eager for future collaborations. If your team seeks academic sponsorship for optimizing your aircraft’s performance, whether for the SAE Aero Design Challenge or any other competition – make sure to check out our Academic Plan for students who are joining design competitions.

Set up your own cloud-native simulation via the web in minutes by creating an account on the SimScale platform. No installation, special hardware, or credit card is required.

References

  • Cui, Aiya & Zhang, Ying & Zhang, Pengyu & Dong, Wei & Wang, Chunyan. (2020). Intelligent Health Management of Fixed-Wing UAVs: A Deep-Learning-based Approach. 1055-1060. 10.1109/ICARCV50220.2020.9305491

The post Team Maverick: Student Success Story appeared first on SimScale.

]]>
Design Build Fly Student Team: Student Success Story https://www.simscale.com/blog/design-build-fly-team-student-success-story/ Fri, 24 Nov 2023 11:44:45 +0000 https://www.simscale.com/?p=84726 In this SimScale student success story blog, we speak with the Design Build Fly (DBF) team at UCLA about their remarkable...

The post Design Build Fly Student Team: Student Success Story appeared first on SimScale.

]]>
In this SimScale student success story blog, we speak with the Design Build Fly (DBF) team at UCLA about their remarkable transformation in aerodynamics using SimScale. This story shares how the Design Build Fly Student Team tackled challenges, their methods, and how SimScale made a big difference in improving their plane’s aerodynamics. Aiden answers some of our questions regarding their experience with the SimScale platform as a team.

Design Build Fly (DBF) at UCLA, a team passionate about engineering, takes flight in the annual AIAA Design Build Fly competition, alongside 110 teams worldwide. Their mission involves crafting fixed-wing RC aircraft that master complex challenges such as carrying the longest possible wingtip-mounted antenna, delivering packages onto a section of the runway after each lap, or towing a banner. Despite their young talent, they landed 15th in the 2023 competition, hungry to soar even higher, aiming for a spot in the top 10.

“SimScale has changed our mindset in terms of CFD by allowing us to run significantly more simulations in significantly less time, and its cloud-based design has been a game-changer for teaching new members.”

– Aiden Taylor, Aerodynamics Lead (DBF)
Design Build Fly student team standing behind their model aircraft
Figure 1: Design Build Fly with their Aircraft for 2023

The Design Build Fly team has a core of young and talented returning members who have experience in competition and are determined to improve. The rapidly growing team is hoping to push into the top 10 within the next couple of years.

Aircraft design involves tricky optimization issues. DBF at UCLA is dealing head-on with these issues as they refine their process to reach the top 10. This involves randomization scripts and genetic algorithms to optimize aircraft sizing and performance, vortex lattice models to determine stability, and detailed CFD analysis to optimize the form of the aircraft.

Prior to switching to SimScale, the team faced many computational and logistical issues. Most team members, as university students, used laptops for work. However, their laptops were slow for simulations with only about 6 CPU cores and 16-32 GB of RAM. This computational power could not even be fully dedicated to CFD, as university students often completed homework simultaneously on the same devices. Also, different devices and systems made it hard to work together because most CFD programs don’t run on both Windows and MacOS.

“SimScale is the CFD tool of choice for DBF at UCLA. It makes sharing and copying simulations easy, simplifying the process of teaching new members and reviewing their results. Since DBF at UCLA has adopted SimScale, the team has been able to run a much higher number of simulations in a short amount of time.”

– Aiden Taylor, Aerodynamics Lead (DBF)

To fix these problems, the team switched to SimScale at the start of the 2022-23 competition year. With SimScale, each student has received access to 16 cores in the cloud, more than what their laptops had. Simulations became available from any operating system simply through a web browser, and running them in the cloud made them faster and allowed multiple simulations at once, boosting the amount of analysis they could do.

The Problem: Formation of Vortices at the Wing Root

Using SimScale for CFD analysis has led to significant performance benefits for DBF at UCLA. For example, during flight testing of a prototype of the 2022-23 aircraft, it was determined that significantly less lift was produced than was expected and that there was a lack of control authority from the tail surfaces. Incompressible CFD analysis in SimScale revealed that leaving a gap between the two removable sides of the wing, rather than having one continuous wing, resulted in vortices forming at the wing root. These vortices not only reduced lift due to high-pressure air leaking into the low-pressure region above the wing but also disturbed the airflow over most of the span of the tail surfaces. 

“The CFD process has essentially been transformed from finding values for an existing design to an iterative process in which there is time to redesign parts multiple times based on CFD results. The team has also seen significant positive feedback from members regarding the learning process, as they are able to quickly share simulations, and they can access their work from any OS.”

– Aiden Taylor, Aerodynamics Lead (DBF)

How They Solved It: Adding a Wing Center Section and Improving Control

Based on the results from CFD, the team added a center section connecting the two halves of the wing in the region where it would not interfere with the landing gear. Post-processing results showed that the new center section of the wing significantly reduced the wing root vortices, causing cleaner flow over the tail surfaces, which resulted in better pitch and yaw authority. Furthermore, adding this lightweight component constructed of foam and carbon fiber resulted in an additional 4.62 lbf of lift at the aircraft’s cruise speed of 66 ft/s. This directly increased the team’s competition score by allowing the aircraft to carry more weight.

Full-Plane CFD in SimScale
Figure 2: Full-Plane CFD (left) showing vortices forming at wing root and (right) with a wing center section leading to increased lift and improved flow

“We’re leveraging SimScale’s capacity to run multiple simulations concurrently in the cloud, enabling us to meet our simulation targets efficiently. Additionally, we’re sharing simulations with team members to adjust parameters and conduct similar studies with varying velocities or geometry.”

– Aiden Tayor, Aerodynamics Lead (DBF)

They’ve employed a Hex-dominant algorithm generating approximately 15 million nodes at a cost of around 30 core hours. Each simulation takes about 4 hours to run, at a cost of around 76 core hours. They examined the total lift and drag force produced by the entire aircraft, along with the specific lift and drag forces attributed to the wing, horizontal stabilizer, vertical stabilizer, and fuselage. Additionally, they gauged Cl and Cd. In certain simulations, they factored in lift and drag forces from other components, such as slotted flaps or landing gear wheel fairings.

Through ongoing refinement using the SimScale platform, they made impressive strides in their design and performance!

(left) CFD simulation of an aircraft showing flow lines in SimScale and (right) graph showing pressure changes with time for different forces in different directions
Figure 3: Sample Results for 2023-24 Prototype Aircraft at 0 deg. AoA and 150 ft/s

Next Steps for Design Build Fly

For the 2023-24 competition year, the team is going even more in-depth with their analysis. So far, they have run a number of design studies, including AoA sweeps at numerous air speeds to determine the lift and drag produced by the aircraft at different angles of attack, and to identify stall characteristics. Further analysis has been completed on the 2023-24 aircraft to test the effects of various subsystems. For example, the effect of endplates on the aircraft’s overall lift and drag has been determined during takeoff and cruise.

An aircraft prototype's vertical stabilizer with logos on it
Figure 4: The DBF team’s newly designed vertical stabilizer on their aircraft prototype using SimScale CFD

Another application of SimScale simulations to the 2023-24 DBF aircraft has been the optimization of wheel fairings to reduce drag caused by the landing gear. A series of designs were iteratively modeled in CAD and tested using CFD in SimScale. Compared to a wheel with no fairing, the wheel with the final iteration of fairing makes 60% less drag!

By constructing the fairings from a specialized lightweight, PLA plastic, the reduction in drag relative to the increase in weight is significant, justifying the addition of the fairings to the competition aircraft.

A blue and gray aircraft prototype in flight (developed by DBF at UCLA)
Figure 5: Prototype of 2023-24 Aircraft in Flight


We’re confident that SimScale’s diverse simulation capabilities will greatly benefit the Design Build Fly Student team in upcoming endeavors, and we’re eager for future collaborations. If your team seeks academic sponsorship for optimizing your aircraft’s performance, whether for the AIAA Design Build Fly competition or any other competition – make sure to check out our Academic Plan for students who are joining design competitions.

Set up your own cloud-native simulation via the web in minutes by creating an account on the SimScale platform. No installation, special hardware or credit card is required.

The post Design Build Fly Student Team: Student Success Story appeared first on SimScale.

]]>
Waseda Formula Student: Student Success Story https://www.simscale.com/blog/waseda-formula-student-student-success-story/ Wed, 22 Nov 2023 11:45:44 +0000 https://www.simscale.com/?p=84389 In this SimScale student success story blog, we speak with the Waseda University Formula Student Team about their remarkable...

The post Waseda Formula Student: Student Success Story appeared first on SimScale.

]]>
In this SimScale student success story blog, we speak with the Waseda University Formula Student Team about their remarkable transformation in aerodynamics using SimScale. This story captures the journey of the Waseda University Formula Student Team, highlighting their challenges, approach, and the pivotal role SimScale played in transforming their aerodynamics development. Ryu answers some of our questions regarding their experience with the SimScale platform as a team.

Waseda Formula Team, a dedicated group of 20 members, competes in Formula Student Japan. This esteemed event gathers around 70 national teams alongside 30 international contenders. In 2022, they secured a commendable 6th place in Autocross, advancing to the Final 6 endurance event. In 2023, despite significantly improving their Autocross performance, they narrowly missed the Final 6 due to ongoing endurance challenges, showcasing their remarkable progress and determination.

“SimScale opened our engineering possibilities and revolutionized our workflow”.

-Ryu, Waseda Formula Team
(left) A formula student team standing behind their competition car; (right) a competition car going around a track
Figure 1: (Left) Waseda Formula Student team at FS Japan ‘23 and (right) their competition vehicle in 2023.

The Waseda Formula Student team may be smaller in size compared to other teams in Formula Student, yet they shine brightly with an incredible sense of unity. Driven by their love for combustion vehicles, they delight in discovering fresh ways to get better even with limited resources.

The Problem: Engine overheating

While maintaining a steady pace in Autocross, the team encountered a significant challenge—endurance remained unconquered in both 2022 and 2023 due to persistent engine overheating issues. After further investigation, the root cause was identified: inadequate airflow through the radiator and suboptimal side pod design, hindering maximum cooling efficiency.

Addressing this obstacle demanded a deep analysis of airflow dynamics through the radiator and optimization of the side pod configuration for enhanced cooling capacity. For a team like theirs, limited in computational resources and CFD expertise, conducting a precise car simulation mirroring radiator characteristics and fan behavior proved challenging.

In their pursuit of a solution, the team found SimScale. Through a few simulation runs, they witnessed the impressive capabilities of the platform, realizing its potential to significantly aid their efforts.

“First, it allowed us to run a full model car simulation at ease, which normally took days to finish with our weak computer resources.  Second, it has one of the best user-friendly interfaces and rich supporting environment from the SimScale team. “

-Ryu, Waseda Formula Team
Simulation images in SimScale showing the pressure contours on the initial design and final design alternative of a formula-design race car
Figure 2: (Left) Side profile for the Pressure contours on the initial design and (right) current final design alternative

How They Solved It: SimScale Incompressible Simulations

The simulation of airflow around the FSAE car was set up based on the tutorial “Incompressible Flow around a Formula Student Car” provided by SimScale. The tutorial, which they found to be reliable and easily comprehensible, helped a smooth transition from the previous CFD software to SimScale. In their simulation runs, they used the incompressible simulation type with the k-omega SST turbulence model to simulate the car’s operation at 11 m/s. To mimic the radiator, Porous media: Darcy-Forchheimer medium was utilized, adopting coefficient values from the tutorial. For the radiator fan, they used Momentum sources: Fan model, integrating the performance data of the specific fan employed for their car.

We were pleasantly surprised with the high capabilities of the SimScale CAD editing tool. We were able to switch to SimScale from previous CFD software without any problems whatsoever, and were surprised with the rich variations of CFD tools that were prepared.

-Ryu, Waseda Formula Team

They’ve conducted approximately 30 simulations for radiator cooling analysis, each taking around 4 to 5 hours and consuming approximately 80 core hours. Their focus on development speed over quality during the initial design phase is reflected in their relatively lightweight mesh settings. They employed a standard meshing algorithm set at level 5 fineness and activated the hex mesh core settings, generating approximately 3 million nodes.

At this point, compared to the initiation of their project, they’ve achieved a notable 40% increase in radiator airflow—a figure aligned with their initial calculations. Obtaining accurate airflow volume data posed challenges with previous CFD software. Yet with SimScale, making use of the Cutting Plane and Statistics features made this task effortless. Moreover, the extensive customization options in result filters enabled them to precisely identify and comprehend issues in each simulation.

By continuously refining their design through the SimScale platform, they managed to achieve remarkable progress!

They noticed that SimScale improved the flexibility, productivity, and time efficiency of their aerodynamics development, completely transforming their engineering process. Within a short period, it allowed them to achieve their initial engineering goals.

“With SimScale, once the simulation begins, you’re free to close the tab and continue working on other tasks using your PC. We frequently created CAD models for other simulations concurrently while running SimScale. Plus, because the simulations are cloud-based and not limited to specific computer resources, they can be accessed and reviewed from any device and location. This significantly boosted team productivity, making CFD simulations available anytime and anywhere.”

-Ryu, Waseda Formula
Pressure and velocity contours in SimScale on the initial and final designs of a formula-design race car
Figure 3: (Left) Pressure and velocity contours on the initial design and (right) current final design alternative.

Next Steps for Waseda Formula Student

The Waseda Formula Student team plans to persist in their efforts, continuing to further explore and refine the rapid rough design to final shape. Their aim is to enhance precision and elevate mesh quality for a more refined final product.

CAD and velocity profile on a race car design for Formula Student Japan 2024
Figure 4: Upcoming design for Formula Student Japan 2024

We are sure that the wide range of simulation capabilities within SimScale will be beneficial for the Waseda Formula Student team for future applications, and we are looking forward to cooperating with them in the future. If your team is also interested in an academic sponsorship to enhance the performance of your vehicle – no matter if it is in Formula Student or any other competition – make sure to check out our Academic Plan for students who are joining design competitions.

Set up your own cloud-native simulation via the web in minutes by creating an account on the SimScale platform. No installation, special hardware or credit card is required.

The post Waseda Formula Student: Student Success Story appeared first on SimScale.

]]>